Expected goals, in all its forms, lets us measure the danger of a shot. There are increasingly many non-shots expected goals models that go beyond this, measuring the danger of the attacks that build up to shots, or beyond, to cover all the different situations that can occur in a game. In fact here’s Sarah Rudd, now of StatDNA, talking about a model using Markov Chains all the way back in 2011. In the ideal world what we want is to be able to show a computer a game state – as if we’d been watching the game on TV and hit the pause button – and ask, how good or bad is this situation for each team?

Today I’m going to introduce an extremely simple (really, overly simple) approach to answering that question, called Time to Shot, or TTS. TTS looks at a particular game state and simply calculates the time – in seconds – until the team in possession makes a shot (Time To Shot For, or TTSF) and the time until their opponents make a shot (Time To Shot Against, or TTSA). The lower this time, the more dangerous the situation for one team or the other, the higher the time, the safer. Obviously this isn’t taking into account the quality of the shot, and that’s a pity, but it has the advantage that it’s enormously simple to implement.

In this post, we’ll use raw, real-world values for TTS, looking at team averages for a bunch of interesting situations. Then, over the next few days and weeks we’ll also see if we can build a predictive model that’s any better than just taking the average, so that we can ask more complicated questions. For example, which players reduce expected TTSF or increase expected TTSA the most? Which teams *cough* Leicester *cough* seem to be able to pull shots out of nowhere in contrast to their expected TTSF?

My hope is that ‘time to shot’ outputs are much easier to communicate, especially in neutral situations, than tiny probabilities. An xG from some possession far from the goal of about 1 in 1000 for and 1 in 3000 against is pretty hard to visualise. But if I tell you a specific game state is on average 120 seconds away from a shot for and 360 seconds away from a shot against, it’s a bit more grounded in reality.

It’s also easy to wrap your head around for particular short-term strategies:

  • Most of the time you’re looking to decrease your TTSF (to zero, hopefully) without drastically decreasing your TTSA.
  • If you are a counter-attacking team, you might allow a team to decrease their TTSF, as long as your TTSF is also coming down.
  • If you’re trailing towards the end of the game, you might risk reducing your TTSA for a decrease in your TTSF.
  • If you’re ahead in the dying minutes of a game, you’re probably more concerned with increasing you TTSA at the expense of everything else.

Okay, I said it was easier to communicate and then used a bunch of abbreviations to make it sound complicated, but seriously, I just think it’s easier to visualise as a concept. And just so you know – if you have the ball, then on average you’re 4 minutes 3 seconds away from having a shot, and 4 minutes 57 seconds away from conceding one. This dearth of action presumably explains much of the defending we see in the MLS.

League Table

Here’s the TTS league table – TTS (F)or, (A)gainst and (D)ifference, the latter calculated as TTSA minus TTSF:

Manchester City 185 395 210
Tottenham Hotspur 187 386 199
Liverpool 187 365 178
Arsenal 204 312 108
Manchester United 253 354 101
Chelsea 217 301 84
Bournemouth 255 334 79
Southampton 232 305 73
Leicester City 238 280 42
Everton 244 280 36
Stoke City 267 288 21
Aston Villa 282 287 5
West Ham United 245 249 4
Norwich City 284 280 -4
Swansea City 281 275 -6
Watford 278 266 -12
Newcastle United 269 256 -13
Crystal Palace 291 248 -43
Sunderland 289 236 -53
West Bromwich Albion 305 251 -54

On average, you’re 185 seconds away from a Man City shot, whereas millions of mayflies hatch into their adult form, only to die never having seen West Brom shoot. City are making history with their shots conceded numbers, and they win the TTSA battle here as you’d expect. Now, remember that TTSF and TTSA are values for the team in possession, so the average TTSA will be higher, as the opponent would need to first win the ball back before they can eventually make a shot.

Overall these numbers aren’t very interesting, nor are they news – we already have shot totals and per 90s, so what’s the point?

Pressing & Counterpressing

The point is, we can do things like this, splitting team’s values up by different event types:

Team Ball Recovery Dispossessed Interception Tackle
Tottenham Hotspur 184 211 211 212
Manchester City 186 196 206 222
Liverpool 196 253 199 222
Chelsea 206 215 250 247
Arsenal 212 221 242 237
Leicester City 246 227 283 280
Everton 247 224 302 310
Southampton 252 258 276 276
West Ham United 256 230 306 331
Manchester United 257 285 291 287
Bournemouth 259 309 272 308
Newcastle United 273 264 276 325
Stoke City 273 292 275 319
Norwich City 285 265 356 355
Watford 286 325 310 311
Aston Villa 289 316 336 345
Sunderland 290 323 315 333
West Bromwich Albion 294 329 367 345
Swansea City 301 329 298 291
Crystal Palace 306 322 348 300

These are the median TTSF values for a variety of actions related to pressing – note that Pochettino’s Tottenham are the quickest team on average to take a shot after a ball recovery. Liverpool aren’t far behind – under Rodgers this numbers was 217 seconds, with Klopp it’s been 191 on average, and indeed they lead the league on TTSF from interceptions. Look at Liverpool’s TTSF off dispossessions though – it seems low, implying that they’re not generating many shots from counterpressing opportunities.

These absolute numbers don’t necessarily tell us anything about team style – better teams get shots off more quickly no matter the situation. Let’s make sure we’re actually measuring a real pattern here, and look at the TTSF values as a percentage of the team’s average.

Team Ball Recovery Dispossessed Interception Tackle
West Bromwich Albion 83% 93% 103% 97%
Manchester City 83% 87% 92% 99%
Tottenham Hotspur 83% 95% 95% 96%
West Ham United 84% 76% 101% 109%
Bournemouth 85% 101% 89% 101%
Chelsea 85% 89% 103% 102%
Norwich City 86% 80% 107% 107%
Liverpool 86% 112% 88% 98%
Manchester United 87% 96% 98% 97%
Everton 88% 80% 108% 110%
Watford 88% 100% 96% 96%
Aston Villa 88% 97% 103% 106%
Leicester City 88% 82% 102% 101%
Arsenal 89% 92% 101% 99%
Newcastle United 90% 87% 91% 107%
Sunderland 90% 100% 98% 104%
Stoke City 95% 102% 96% 111%
Southampton 96% 98% 105% 105%
Crystal Palace 100% 105% 113% 98%
Swansea City 100% 109% 99% 97%

That dispossession number really sticks out now – as a percentage of their average, Liverpool’s TTSF off dispossessions is the worst in the league. Their pressing is certainly affording them some control, as detailed by Dustin Ward in his recent excellent piece on Liverpool, but they’re either unable or unwilling to create scoring opportunities from counterpressing.

Forget the minutiae of pressing for a moment, what I’m trying to show you is this: we have a metric we can employ for every team, anywhere on the pitch, for any type of event.

Defensive Areas

Part of the motivation for a metric like this is experimenting with replacements for ball progression in PATCH. Different teams allow ball progression in different areas, because they’re set up to deal with it. A famous example this year is Leicester, who often allow opponents to penetrate down the wings, because their low block is often able to mop up afterwards. These tables represent a football pitch split into a 10×10 grid, with the defending goal in the middle on the left. The percentages are the ratio of the opponent’s TTSF in that grid square, compared to the global average. So, high, green values are safer spaces – areas where the opponent is usually further away from a shot. Low, red values are areas in which opponents are closer to a shot on average. Here’s Leicester:

Area 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
0-10 95% 143% 108% 142% 97% 137% 87% 135% 82% 74%
10-20 178% 59% 71% 86% 77% 96% 121% 62% 13% 75%
20-30 56% 18% 93% 79% 110% 88% 99% 115% 172% 93%
30-40 66% 24% 60% 123% 144% 92% 121% 89% 111% 105%
40-50 1% 34% 86% 146% 53% 115% 75% 196% 164% 80%
50-60 196% 120% 44% 93% 104% 42% 90% 124% 108% 113%
60-70 67% 63% 76% 50% 85% 101% 154% 129% 50%
70-80 149% 6% 108% 115% 170% 104% 104% 132% 164% 144%
80-90 86% 20% 98% 89% 118% 49% 233% 130% 99% 86%
90-100 93% 102% 116% 107% 75% 115% 93% 109% 81% 51%

You can see that in their own half, down the flanks, Leicester keep their opponents to an above average TTSF. Compare and contrast to Everton:

Area 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
0-10 74% 63% 68% 76% 93% 105% 55% 135% 113% 82%
10-20 23% 89% 98% 74% 76% 137% 132% 76% 110% 42%
20-30 16% 29% 112% 115% 95% 55% 61% 94% 189%
30-40 1% 137% 67% 71% 120% 77% 58% 42% 106% 102%
40-50 86% 10% 105% 52% 99% 62% 80% 93% 101% 125%
50-60 122% 35% 116% 52% 125% 85% 87% 129% 62% 124%
60-70 149% 73% 36% 53% 119% 98% 88% 81% 95% 102%
70-80 15% 12% 74% 97% 83% 127% 125% 122% 92% 37%
80-90 35% 35% 61% 28% 61% 120% 93% 103% 51% 333%
90-100 31% 37% 59% 97% 111% 175% 91% 120% 89% 94%

Everton seem pretty weak down the flanks in comparison. You can imagine plugging this into PATCH – look at each opponent’s attacking moves, observe the average opponent’s TTSF values, and instead of judging a defender by the ball progression, judge them by how much closer we think the opponent is to a shot having been allowed to move through that defender’s territory.

Again, there’s no magic here, I’m just hoping to convince you that this is a flexible little metric that we can apply to all sorts of situations.

Time Wasting

Another simple application is time wasting. Which teams are best at keeping their TTSA up when they’re leading? This table shows TTSA at +1 goal difference as a ratio of the team’s TTSA when tied, all limited to 80 mins plus, when we’re reasonably sure a team ought to be protecting their lead:

Team Ratio Games
Liverpool 291% 12
Sunderland 196% 7
Norwich City 188% 6
Watford 139% 8
Aston Villa 127% 3
Crystal Palace 104% 9
Newcastle United 101% 6
West Bromwich Albion 97% 11
West Ham United 97% 10
Bournemouth 96% 8
Stoke City 87% 9
Chelsea 86% 8
Manchester City 85% 6
Southampton 77% 7
Swansea City 66% 9
Manchester United 65% 13
Arsenal 62% 9
Tottenham Hotspur 57% 10
Everton 56% 6
Leicester City 45% 13

We can probably ignore Villa as it’s such a small sample size, but Liverpool are the kings of sitting on a 1 goal lead with safe possession. This is slightly odd as their collapse against Southampton is fairly fresh in the mind, but it’s true – one goal up after 80+ minutes their shot suppression numbers are good in absolute terms, but even better compared to tied game states. Also riding high are Sunderland, helmed by Sam Allardyce, who rates well in an analysis by Daniel Altman about teams camping out in the corner when ahead at the end of the game.

At the other end, Leicester, who have recently extended their run to five 1-0 victories in six matches… what’s up with that? Well, obviously they’re up 1-0 a lot, but that doesn’t explain why this relative value is so bad – but it’s real. They really are losing the ball and conceding shots more than twice as quickly when defending a lead than when tied. I suppose this is their “bend, don’t break” defence in action, i.e. do all the things a bad defence would do, short of losing. ¯\_(ツ)_/¯

Substitute Effects

Let’s have a look at how substitutes affect teams’ TTS numbers. There are certainly some interesting outliers:

Tottenham Hotspur 100% 81%
Southampton 87% 91%
West Ham United 80% 96%
Everton 112% 101%
Chelsea 115% 102%
Newcastle United 114% 111%
Manchester City 114% 114%
Watford 113% 118%
West Bromwich Albion 61% 125%
Sunderland 105% 127%
Swansea City 87% 127%
Stoke City 97% 128%
Leicester City 109% 128%
Norwich City 127% 130%
Liverpool 81% 131%
Aston Villa 88% 133%
Bournemouth 98% 136%
Crystal Palace 115% 138%
Arsenal 97% 139%
Manchester United 97% 149%

When Pulis sends a man on, a shot will surely follow. Now that’s probably not a huge surprise, if perhaps he only makes substitutions before corners – for my sins I didn’t check, because look at that other number sticking out like a sore thumb: when Tottenham make a substitution, their TTSA falls to 81% of its usual value! I asked a few people about this possible pattern on Twitter, and a few pointed the finger at the looming presence of Ryan Mason. More generally, it seems possible that either Pochettino’s system requires a degree of concentration that can be disrupted by substitutions, or perhaps Tottenham’s squad depth is lacking and the subs are just plain bad. Or maybe he just sends people on before defending corners. Either way, an interesting one to follow up later.

John Stones

One final one, just because I thought it was too cute not to share. John Stones, as we know, likes to bring the ball forward at his feet. We’ve seen his Cruyff turns, but what do they contribute? Well, the time-to-shot-for from a John Stones take on is 258 seconds. The time-to-shot-against? 258 seconds. That’s right, every time you see him dribble, you will know that we stand delicately positioned at the nexus of possibilities, a cosmic coin-flip deciding whether Stones is to be the hero or the villain.


So, there you have it, Time-to-Shot, a dead simple metric for measuring all sorts of stuff. Given that some of the results above are a little surprising, we ought to poke deeper and make sure we’re not missing anything important. There are certainly some caveats:

  • Events occurring when there is no shot for the rest of the half don’t get a TTS value, so this generally skews the values lower than they should be. One way around this is giving missing values a static, high value for TTSF and TTSA, but that’s a bit arbitrary.
  • Sample sizes for calculating averages drop the more criteria you add, increasing the uncertainty.
  • We don’t include any measure of shot quality. This is another model that reflects Liverpool’s good work at reducing the number of shots they concede, but ignores the quality of chances they conceded, which has at various points undone all that work.

Next stop is the almost impossible task of creating a predictive model to estimate TTS values for events. It’s unlikely we’ll get close to the average (still pretty bad) accuracy of an xG model, but being able to compare player’s actual TTS values to even a vaguely sensible estimate will hopefully give us some interesting results in the aggregate.

I hope you don’t think this metric is just complete junk, though I’ll admit I’ve been back and forth about it for a long while. It is certainly not as powerful as a decent non-shots xG model, but the fact that it can be applied to so many different situations with such ease is hugely attractive to me. If a predictive model is at all possible I think it’ll yield some useful results. Either way, happy to take the abuse here or on Twitter if you think it’s not worth pursuing. Alternatively, if there are any interesting teams or situations you’d like to see measured with this approach, get in touch.

I’m also looking for feedback on these new slightly garish colour-scale tables. I’ve gone with a design that I think is clearest at a glance, but it might be too much for people. Other designs are available.


My Stats #8245–8249 & 117

I spend a lot of time working on new models and metrics, watching games and generally mucking about with football stuff, but very little of it sees the light of day. Sometimes I fall out of love with an idea, sometimes it just doesn’t pan out, sometimes I hit the limit of what my brain (or for that matter my free time) can handle and give up.

Today, I’m going to take you on a tour of my drafts folder in WordPress, and as a weird form of primal scream therapy, I’ll give you a sample of some of the ideas I’ve had over the last few months and stalled on. I’ve no idea if this will be in any way useful or inspiring for people, but I hope at the very least that you’ll read it and think, “hey, that guy’s ideas are stupid, I could do this!”

As a festive but belated Easter bonus, I’ve also added a ‘probability of resurrection’ to each idea, so you can see which ones are victims of mere procrastination instead of actual shame.

The Path of Least Resistance

This idea is sort of the intersection of all the shot chart and PATCH stuff I’ve done – can you calculate and plot the areas where a team (or indeed a particular lineup) are weakest? Is it possible to visualise the path of least resistance, along which you’ll find it easiest to progress towards your opponent’s goal?

This isn’t supposed to sound grandiose, or like some universal metric that just tells you how to beat teams, but I genuinely think it would be great to have a visualisation that combined the shot and PATCH charts, to be able to get a feel – at a glance – for where your own team is weak, or where prospective opponents might be weak.

There are a few ways to do this, the first quick attempt I tried was purely visual, plotting big fat lines on a pitch wherever you conceded ball progression, overlaying them, and changing the colour of the overlaps as they get more and more used. This looked almost comically vomitous, so I paused to work on both a better model and visualisation.

Review: promising, until we got to the word ‘vomitous’.
Probability of resurrection: 6/10

Dangerous Dispossessions & Forward Retention

I spent a long time cobbling together stats for an extremely snarky piece about Everton’s ‘Fab Four’ of Barkley, Stones, Deulofeu and Lukaku. The general idea being, each player had bad habits, and we could judge Martinez by the degree to which those habits were being trained out. To be quite honest, three of those players have been fine and/or excellent this season so I cooled on the idea, plus I could never find the exact right metric to test against.

A couple of things I came up with were quite fun though. The first was ‘dangerous dispossessions’. Ross Barkley has spent large swathes of his career dribbling into trouble and losing the ball, and I started watching games with a eye for one thing: how many shots from counter-attacks did Everton conceded when Barkley was dispossessed? The idea being, some players really shouldn’t be dribbling, because they give up more equity than they ever gain. For a second I thought I had him with this, he and Alexis Sanchez featured highly, but after I’d per ninetified everything and used xG instead of raw shots, Barkley stopped sticking out so much.

The second metric I looked at was ‘forward retention’, where you don’t just look at pass completion, you also look at the success of the player you’re passing to, the idea being that some players might play their team-mates into trouble. And then you’ll want to look at whether players are playing passes that are too safe and build a model to allow you to look at the risk vs reward of individual passes etc etc.

Review: better if all this was subsumed into a more general model that looked at events on the pitch and their actual vs likely outcomes.
Probability of resurrection: 3/10

Peak xG

I was thinking about this partly as a way of measuring striker positioning, but also in light of Damien Comolli’s mention of judging defenders by interceptions on the Analytics FC podcast (about 30:52 in). Basically, you can sample along the line of an attempted cross or throughball or whatever, and calculate what could have been the maximum xG for a resulting shot. You can then hope to judge a striker’s positioning by whether they met the ball at its point of peak xG (or if they indeed exceeded it by taking a touch or whatever). You can also hope to judge defenders by measuring how dangerous a shot they prevented through an interception.

Review: probably very simplistic in a world with positioning data, but might be interesting to see a few numbers.
Probability of resurrection: 5/10

Pinball Charts

This was an alternative I imagined to the (rather busy looking, these days) PATCH charts, and part of my frustrated obsession with making charts as animated gifs. The idea was to plot the lines of an opponent’s attacking possession as it moved over the pitch, ‘activating’ defending players’ territories as the lines entered. Territory polygons would start faded out almost completely but become more visible when entered, a bit like a bumper lighting up when hit on a pinball table. If the possession ended in a territory, we’d make it more green (yay, you stopped an attack), if it passed through and out the other side, we’d make it more red (boo, you failed).

I didn’t get very far with this, if only because the graphics library I’ve been using for everything is a little hateful. But I think it would solve a lot of problems with charts that get very busy, and I’m eager to at least see people experiment with whether any useful information can be communicated with animation of this sort of data.

Review: this would probably annoy enough people on Twitter to be worthwhile.
Probability of resurrection: 9/10

Expected Yellows

Clubs are looking for any edge they can get in games, and I would love to build some referee models. The easiest to do with the data that’s out there is expected yellows: given a foul, what is the likelihood of a player being booked for it? Can we find more/less lenient refs, unfairly maligned players versus those immune to punishment, areas of the pitch where it’s safer to put in a professional foul? Could all be interesting, but there’s only about 1000-2000 cards a season depending on the league, and those for a variety of offences, so it’s quite difficult to pin down any patterns with confidence, and that’s before taking into account that the data doesn’t contain how dangerous a particular tackle was.

Expected offsides would be another wonderful model to have if you were intent on destroying the beautiful game at all costs.

Review: not enough data to do a decent job at this stage.
Probability of resurrection: 4/10

Passing Variety

This is one of those weird ones where I’m sure someone already did this, but I may just be misremembering Marek Kwiatowski’s article on Statsbomb about classifying central midfielders. Anyway, what I wanted to do was look at similar metrics to Marek, the pass direction and length, but see which teams had built midfields with a variety of passing styles, as opposed to just the same profiles across the board. Then of course you’d have to look at which approach actually worked better, or whether different lineups enabled teams to handle different opposition better etc. If this sounds familiar to anyone and they know the article I’m talking about, please get in touch so I know I’m not dreaming it.

Review: would be interested to read even if it already exists.
Probability of resurrection: 9/10

Corner Positions

I don’t remember ever making this, but it’s the only one of these that has code which worked first time, so I can actually give you some pictures. what you’re seeing here is players’ aerial performance from corners (straight from corners, whoever wrote this code never bothered to include headers after the first). Size is volume, colour is the ratio won and the centre of each players’ circle is their average position for aerial challenges. Left side of pitch is for corners from the left, right is for right, so picture them coming from the bottom of the screen.

Both Merseyside teams covering themselves with glory here.

Reviewa bit sparse, probably interesting to someone though.
Probability of resurrection: 6/10


This wasn’t actual work per se, but after dropping the Possession Adjusted bit from PATCH, and talking about it on the Analytics FC podcast, it occurred to me that CROTCH would be a magnificent acronym. Control Retained Over Territory something… something. Didn’t pan out, probably for the best.

Probability of resurrection: 0/10


I’d genuinely forgotten a couple of these until I went through old SQL stored in databases, so it’s been a useful process. By all means take any of the ideas above and run with it (or tell me if you’d desperately like to see it completed). In general I’m happy if you want to replicate anything on the blog as long as you credit me with a little inspiration.

In the meantime, I’ve still got plenty of things sitting in my drafts that I’m actively working on, so I haven’t included those, in the hope that they don’t fall into disrepair also. In fact, I ought to publish this before I forget about it.

My Stats #8245–8249 & 117

Idle Hands

“He’s had nothing to do all game,” we hear, every single week on Match of the Day, as if we’ve just cut to images of Hugo Lloris in a deck chair with a dog-eared copy of War and Peace, startled as a striker thunders by spilling his mojito.

Do keepers really switch off when they’ve had nothing to do? I thought it would be simple enough to check, so I looked at all the shots I have on record in terms of my save difficulty metric.


By working out the time between every shot on target faced and the previous goalkeeper event (be it another save, or a goal kick or whatever to wake the keeper out of their trance), you have the number of seconds the keeper has been idle before that shot. I limited the data to shots from open play, as you won’t have the element of surprise from dead-ball situations, and reset the clock at half time, so the maximum time a keeper can be idle is a little north of 45 * 60 = 2700 seconds.

Then to measure keeper over- or under-performance, you can work out the saves above expected for that shot: if a shot has a save difficulty of 70%, we expect a statistically average keeper to only save it 30% of the time. So if they do save it, we’ll score that as 0.7 saves above expected – they got 1 whole save, we expected 0.3 saves (which obviously isn’t actually possible on a single shot, but you get the picture), so they got a profit of 0.7. If they don’t save it, they got a big fat zero saves, and we score it as -0.3.

So, we know for every shot whether the keeper over or under performed when attempting a save (to the extent you believe the outputs of an expected saves model, obviously), and we know how long they’ve been idle. Is there any interesting correlation here? Do higher numbers for idleness result in saves under the expected value?


There is no overall correlation between idleness and shot stopping. I looked at the measure above, along with raw save percentage, with saves grouped into buckets by various lengths of idleness. The chart below shows the save percentage as the green area, and the saves above expected as the line.


This shows basically nothing – the saves above expected values are tiny, and dwarfed by the error of any particular xG model you choose to use. You can also safely ignore the big jump towards the end of the half – the sample size is miniscule. So, keepers can rest easy against their goalposts?

On a hunch I filtered the data down to what Opta deem as ‘fast breaks’. If you’re going to catch an idle keeper off guard, maybe you just need to be quick about it. It’s a smallish dataset (just over 4000 shots) but behold this trend:


So there you go, have we found something? By the time we’re in that 1200-1499 second bucket, we’re talking 117 shots, with 72 in the next bucket, so again, small sample. I’ve also chosen the bucket size fairly arbitrarily – at 150 seconds per bucket, things are far more chaotic, and we should be wary of Simpson’s paradox when aggregating data. But it does seem to be a hint that maybe something’s going on. There’s at least a 10 percentage point drop in save percentage as idle time increases, and keepers are also saving fewer shots than we expect, which should account for any shot quality issues above and beyond raw save percentage.

Are we sure we have the right cause though? I checked if it was just that teams create better quality chances later into a half (encouraging teams on to them for the first half hour to create counter attacks, or probing and finding weaknesses, I dunno) but saw no real differences per minutes of the half. Then I thought that perhaps it’s nothing to do with keepers at all, maybe defences are the problem. So I created this chart – it shows the same save percentage area as above, but instead of saves over/under expected, I just put the average chance quality and the average save difficulty. This tells us how good the oppositions chances were, and how hard they were to save, regardless of how the keeper dealt with them.

fast-break-idle-xgThe important thing to note here is that my chance quality model includes almost nothing about the actual shot as taken by a striker – it’s mostly about the position of the shot, and the buildup to it. For that metric to be going up (again only slightly, and again with a small sample size) it’s entirely possible that the fault doesn’t only lie with idle keepers, but with idle defences too, for allowing better chances. It’s also possible that the under-performance of keepers in terms of expected saves (to the extent we believe it exists) is because we have no measure for defensive pressure.

So what do we know? If there is a decline in performance due to idleness, it’s small, hard to prove with confidence, and may in fact be due to defences and not keepers. Not very convincing, I’m sure you’ll agree, but I was recently reminded how important it was to publish low-significance and null results along with everything else (if only to ease the pressure on the wasteland that is my drafts folder). I also googled around a bit and found nothing mentioning this, so I thought it would be good to get it out there for posterity. At the very least, every time you hear the old cliché in commentary, you’ll know there’s probably little reason to worry that keepers who have been idle will suddenly forget to stop shots.


A few notes and avenues for future work if you’re bothered:

  • By all means replicate this any way you like, it’s simple enough even if you have public shot data derived from the StatsZone app or BBC live text commentary. I’d be fascinated to hear if you find any patterns I’ve missed.
  • I’ve not looked at individual keepers – it’s possible there are some particular keepers that switch off, although I doubt it, and it’ll be a small sample size.
  • I didn’t include periods of extra time, just because I wanted to make sure that we were always comparing apple-shaped things.
  • I wasn’t strictly measuring idleness as time between saves, I was assuming that a catch or a goal kick was enough to wake a keeper up, but perhaps that’s an assumption to test.
  • I’m only looking at shot stopping, so I can’t rule out that idle keepers underperform on interceptions or catches in some way.
  • There are other measures one could use for fast breaks, or indeed counters, that may increase the sample size.
Idle Hands

Evaluating Defenders With PATCH

Today we’ll look at players in Europe through the lens of my PATCH defensive metric. If you can’t be bothered trawling through an entire post to understand the method, you only really need to know this: PATCH measures how much a defender prevents their opponents from advancing the ball through their territory. Clearly that leaves lots of information about defenders and defences in general on the table, but you’ll have enough information by the end of this post to bash me over the head with specific examples of players you think it’s misjudging. In fact, I’ll even help you out along the way and spell out all my worries about the metric, and the things I think it ought to do in the future.

That said, in PATCH’s defence, it has some nice characteristics:

  • A team’s medianish PATCH score correlates pretty well with shot numbers conceded by a team over a season, at around 0.7.
  • It correlates slightly better with xG conceded by teams, at around 0.75.
  • It persists year-on-year for teams, correlated at around 0.6.
  • A player’s median PATCH persists year-on-year at around 0.3.

But putting numbers aside, let’s see how you feel about some individual player values. If you look at the standard deviation of median PATCH values by minutes played, you can see things settle down at around 600 minutes:


That’s because at very low values you get some weird outlying games, where players haven’t had any opponents in their territory and so score very highly. Just to be safe, we’ll set a cutoff a little higher, so here are the top European centre-backs with more than 900 minutes this season:

Competition Team Player PATCH
Italian Serie A Fiorentina Gonzalo Rodríguez 6.27
French Ligue 1 Lyon Samuel Umtiti 5.79
Spanish La Liga Real Madrid Pepe 5.52
Spanish La Liga Barcelona Gerard Piqué 5.24
German Bundesliga FC Bayern München Jerome Boateng 5.20
Spanish La Liga Barcelona Javier Mascherano 5.20
Spanish La Liga Málaga Raúl Albentosa 5.19
Italian Serie A Roma Kostas Manolas 5.06
Italian Serie A Lazio Wesley Hoedt 4.99
German Bundesliga Borussia Dortmund Sokratis 4.94
Italian Serie A Fiorentina Davide Astori 4.91
French Ligue 1 Paris Saint-Germain Thiago Silva 4.86
English Premier League Liverpool Martin Skrtel 4.72
English Premier League Liverpool Mamadou Sakho 4.72
Italian Serie A Internazionale Jeison Murillo 4.71
Italian Serie A Milan Alex 4.66
Italian Serie A Juventus Andrea Barzagli 4.63
French Ligue 1 St Etienne Loic Perrin 4.59
French Ligue 1 GFC Ajaccio Roderic Filippi 4.57
Italian Serie A Juventus Leonardo Bonucci 4.49

There are some clumps of teams here, so we should immediately be suspicious that we’re measuring team effects as much as player effects – PATCH currently doesn’t adjust for teams average scores, and for that matter nor does it score leagues differently. But these numbers are mostly defensible. It’s fun to note that Raúl Albentosa was a Derby County signing during Steve McClaren’s reign, and he’s recently been targeting Samuel Umtiti at Newcastle, so it’s nice to know I’ve built the perfect metric for him, even if you don’t buy it.

The same metric works for defensive and centre midfielders too:

Competition Team Player PATCH
Spanish La Liga Barcelona Sergio Busquets 5.66
French Ligue 1 Lyon Maxime Gonalons 5.50
Spanish La Liga Barcelona Ivan Rakitic 5.21
Italian Serie A Fiorentina Milan Badelj 5.19
Italian Serie A Roma Daniele De Rossi 4.84
French Ligue 1 Lyon Corentin Tolisso 4.81
Italian Serie A Fiorentina Borja Valero 4.60
Italian Serie A Fiorentina Matias Vecino 4.48
Spanish La Liga Sevilla Grzegorz Krychowiak 4.45
Italian Serie A Lazio Lucas Biglia 4.31
Italian Serie A Internazionale Felipe Melo 4.30
Spanish La Liga Las Palmas Vicente Gómez 4.28
English Premier League Liverpool Emre Can 4.26
Spanish La Liga Sevilla Steven N’Zonzi 4.26
German Bundesliga Borussia Dortmund Ilkay Gündogan 4.26
Italian Serie A Roma Radja Nainggolan 4.25
German Bundesliga FC Bayern München Xabi Alonso 4.24
German Bundesliga FC Bayern München Arturo Vidal 4.11
Spanish La Liga Rayo Vallecano Raúl Baena 4.10
English Premier League Liverpool Jordan Henderson 4.09

Busquets on top, all is right in the world.


We can already see some talented youngsters in the tables above, so let’s focus purely on players that were 23 or under at the start of this season. I’ve relaxed the minutes to 600, here’s the top 30, taken from all midfielders and defenders:

Competition Team Player Date of Birth Minutes PATCH
French Ligue 1 Lyon Samuel Umtiti 14/11/1993 1852 5.79
Italian Serie A Lazio Wesley Hoedt 06/03/1994 1507 4.99
French Ligue 1 Lyon Corentin Tolisso 03/08/1994 2188 4.63
German Bundesliga FC Bayern München Joshua Kimmich 08/02/1995 727 4.54
English Premier League Liverpool Emre Can 12/01/1994 2054 4.44
German Bundesliga VfB Stuttgart Timo Baumgartl 04/03/1996 1287 4.30
German Bundesliga Bayer 04 Leverkusen Jonathan Tah 11/02/1996 2076 4.27
French Ligue 1 Lyon Sergi Darder 22/12/1993 696 4.15
German Bundesliga VfL Wolfsburg Maximilian Arnold 27/05/1994 877 4.10
German Bundesliga FC Bayern München Kingsley Coman 13/06/1996 895 3.98
Spanish La Liga Rayo Vallecano Diego Llorente 16/08/1993 2228 3.97
French Ligue 1 Paris Saint-Germain Marquinhos 14/05/1994 988 3.95
Italian Serie A Empoli Federico Barba 01/09/1993 927 3.93
English Premier League Tottenham Hotspur Dele Alli 11/04/1996 730 3.93
English Premier League Tottenham Hotspur Eric Dier 15/01/1994 2375 3.79
English Premier League Arsenal Héctor Bellerín 19/03/1995 2346 3.79
Spanish La Liga Real Sociedad Aritz Elustondo 11/01/1994 1643 3.68
Spanish La Liga Atlético de Madrid Saúl Ñíguez 21/11/1994 1337 3.66
Italian Serie A Lazio Sergej Milinkovic-Savic 27/02/1995 715 3.65
French Ligue 1 Monaco Wallace 14/10/1994 1654 3.63
German Bundesliga Borussia Dortmund Matthias Ginter 19/01/1994 1414 3.62
Italian Serie A Milan Alessio Romagnoli 12/01/1995 2102 3.62
German Bundesliga Borussia Dortmund Julian Weigl 08/09/1995 1575 3.59
Italian Serie A Lazio Danilo Cataldi 06/08/1994 1024 3.55
Italian Serie A Napoli Elseid Hysaj 02/02/1994 2279 3.52
Spanish La Liga Sevilla Sebastián Cristóforo 23/08/1993 614 3.51
English Premier League Chelsea Kurt Zouma 27/10/1994 1949 3.51
French Ligue 1 Nice Olivier Boscagli 18/11/1997 792 3.48
Spanish La Liga Getafe Emiliano Velázquez 30/04/1994 745 3.44
Italian Serie A Sampdoria David Ivan 26/02/1995 785 3.41

Note: the tables above filter to performances at centre-back or in midfield, if the values differ in this last table it’s because it considers their performances in a wider variety of positions.

So, cheer up Timo Baumgartl, PATCH doesn’t count mistakes. You’ll note again big clumps of players from the same teams (kudos, Lyon) – we know by now we’re probably measuring some systematic effects here. It’s also worth pointing out that if a young player is getting this level of minutes, in the big 5 leagues, they’re probably at a certain level without even looking at their numbers. But again, at first glance, this is a decent list.

Liverpool’s First Choice Centre-Backs

At the Opta Pro Forum I blurted out to the Liverpool contingent that my pet defensive metric quite liked their defending, to which they replied “ours doesn’t.” So I was a little crestfallen, but I’ll continue to talk myself out of a job here: Liverpool concede the second fewest shots in the league, so I’m right. They also have the worst save percentage in the league but nevertheless renewed Mignolet’s contract, so they’re wrong. QED. Let’s look more closely:


Here you’ve got all Liverpool’s games this season – Rodgers up to the fateful Merseryside derby on the 4th October, Klopp soon after. The markers show individual PATCH performances, and the lines are five-game moving averages (although Touré isn’t quite there yet). The average PATCH for EPL centre-backs is around 3.3, and you’ll note that Liverpool are regularly exceeding that. You can also see that Skrtel had some insane outliers, but maintained pretty good form for Klopp until his injury (which – if you’re to believe renowned fitness troll Raymond Verheijen – was inevitable). The fight for second place is closer, but even taking Lovren and Sakho side-by-side, I don’t believe you’re left with a terrible pairing.

So, I don’t believe Liverpool’s defence is terrible and I think they have a solid foundation both in defence and midfield for Klopp to build on over the next season. I do believe they’ve been unlucky, as James Yorke points out in this article on Statsbomb. It’s funny to compare Everton and Liverpool’s defences this season – they both sit on 36 goals conceded in the league. Tim Howard has taken a lot of heat this year for his performances, all while facing 4.7 shots on target a game – the fourth worst in the league. Mignolet’s been facing 3.3 – the second least. While Howard has now been unceremoniously dropped and is soon to be shipped off to the MLS, Mignolet gets his contract renewed. Sure, some of of this is luck and not entirely his fault, but I genuinely believe you should not lay the blame on Liverpool’s defence, there’s not a lot more they could do to make Mignolet’s life quieter.

Arsenal’s Midfield

Through injuries, sentimentality or pure stubbornness, it’s hard to tell if Wenger knows his best midfield this season. I asked on Twitter and a lively debate ensued, but excluding the lamentation of Wilshere believers, the most common answer was Coquelin & Cazorla, with some pondering ways to insert Ramsey into the mix. What does PATCH think, purely defensively, of their appearances in the centre of the field?


Okay, well, first thoughts are that this is a graph format looking to get retired early, but here you have the four players who have put reasonable minutes into Arsenal’s central midfield, with the markers again showing their PATCH values in each game week, and the lines again showing a five game moving average. The average PATCH for a midfielder in the EPL is basically the same as a defender, around 3.3. This graph seems to imply that Cazorla has very good and very average games, and similar could be said for Flamini. Ramsey doesn’t seem like anything special, but is pretty low-variance. Coquelin seemed to start the season very strongly, but was fairly average in the lead-up to his injury.

Let’s break it down more simply, here are the averages:

Player PATCH
Santiago Cazorla 4.17
Francis Coquelin 3.83
Mathieu Flamini 3.79
Aaron Ramsey 3.60

So in black and white, we seem to more or less agree with Arsenal fans’ instincts.

N’Golo Kanté

What of players whose defending we rave about but who don’t make an appearance high up the PATCH ratings? N’Golo Kanté is way down the list, with a very middling  3.12. What’s happened there? Well, let me reiterate that PATCH measures territory and ball progression, nothing else. As I mentioned on the Analytics FC podcast recently, not all ball progression is bad. Much has been made of Leicester’s “bend, don’t break” defensive scheme this season – they give up territory but their low block often makes up for it, this means their midfield isn’t likely to score highly for repelling the opponent. Kanté himself regularly relies on pace and last ditch tackles (and he is an excellent tackler) to retrieve the ball once it’s in his territory, but if a pass has been completed in that territory, PATCH has already given him a demerit.

So… PATCH is useless because it misses demonstrably good players? Well, I’m not sure I’d go as far as calling Leicester’s defence bad, but it’s certainly well below par for a league leader, as Tim at 7amkickoff recently analysed. That said, I’ll admit I’m a little uncomfortable. I’ve said elsewhere, the essence of PATCH, or really any defensive metric, is this:

  1. Whose fault is it?
  2. How bad is it?

In PATCH, the whose fault part is calculated by territory (and there are lots of ways to do this better) and the how bad bit is done through ball progression. Alternatives to the second might pick Kanté up better – how many moves enter his territory, but never leave? That would be an interesting one to look at, and something I’ll explore soon.

For now, let’s just say that he’s valuable for Leicester inasmuch as his defensive skills turn into attacks very effectively, because it’s Leicester’s attack (and let’s face it, their luck) that is powering their title challenge, and not necessarily their defence. And that, dear reader, is another thing that PATCH doesn’t measure in defenders.


Hopefully if you’ve got this far, you believe there’s value in something like PATCH as a way of measuring defenders. It’s certainly entangled with teams’ systematic effects, and we suspect it has some false negatives. I don’t think looking at these outputs that there are tons of false positives however, but then Flamini rears his head so who knows.

I’m constantly working on PATCH, so I’d love to hear your ideas for places it might fall down, or things you’d like to see it applied to. To that end, I’ve bunged PATCH values for all EPL performances this season on Github. This file contains:

  1. Team
  2. Opposition
  3. Match date
  4. Player
  5. Date of Birth
  6. Nationality
  7. Starting lineup X position
  8. Starting lineup Y position
  9. Minutes played
  10. PATCH

Play, critique, ignore, do what you will. I’ll see if I can get to the point where these are updated for a all players in a bunch of leagues every week, but right now I can’t guarantee the scoring is going to be at all stable with all the changes I’m making.

Evaluating Defenders With PATCH

PATCHing Teams

I explained the current PATCH methodology in my previous post. Today I’m going to do a deep dive into how PATCH views the current teams in the EPL. Here’s what the table looks like (pre-Southampton on Saturday):

Chelsea 2.84
Manchester United 2.79
Liverpool 2.73
Tottenham Hotspur 2.70
Manchester City 2.68
Bournemouth 2.64
Arsenal 2.61
Southampton 2.45
Leicester City 2.38
Aston Villa 2.34
Norwich City 2.28
Watford 2.27
Palace 2.27
West Ham United 2.27
Everton 2.22
Swansea City 2.18
Stoke City 2.13
West Bromwich Albion 2.11
Newcastle United 1.97
Sunderland 1.88

The values for PATCH are the 60th percentile of all performances for each team. You could, if you were highly motivated, work out the actual units for PATCH, but treat it as abstract. 2 is around average, somewhere just under 4 is the 90th percentile amongst player performances and 5+ would be outstanding. Given that, I am reasonably happy with how this shapes up.

PATCH Correlations

At first glance the numbers above don’t look bonkers, but how does the metric correlate with other team defensive stats? Let’s have a look:

Percentile GA xGA Shots Against SoT Against
10th 0.06 0.10 0.08 0.06
20th 0.22 0.30 0.20 0.15
30th 0.28 0.44 0.38 0.30
40th 0.29 0.56 0.54 0.44
50th 0.27 0.61 0.63 0.45
60th 0.27 0.71 0.76 0.55
70th 0.19 0.65 0.71 0.48
80th 0.16 0.60 0.62 0.38
90th 0.10 0.47 0.50 0.29

Those are the R2 values each team’s PATCH values at a certain percentile (10th being the lowest 10%, i.e. worst defensive performances), compared to some traditional measures. It’s great to see that we’re nicely correlated with expected goals against and shots, though I should point out that shots do directly go into the calculation – if you allow a shot through your territory, it’s marked against you. However, that’s only a small proportion of the gains measured. I tested with shots removed from the ball progression metric just to be sure and the correlations barely went down.

Defensive Ranks

So far we’ve only looked at team’s performances en masse, as measured by PATCH. This is what things look like if we break them down by rank in a team’s formation:


There are a few interesting patterns that immediately jump out:

  • Bournemouth’s attacking midfielders and forwards are doing a bunch of defensive work.
  • Manchester City’s less so.
  • Tottenham have the least penetrable midfield of any team in the league.
  • As you might expect, Leicester’s attack and defence are a little more robust than their midfield, reflecting the fact that they press high then retreat low.

Lingering on these numbers a little longer, I thought I’d compare these numbers to someone else’s model for a further sanity check. Mark Thompson of Every Team Needs a Ron is one of my favourite writers, and is devoted to studying defenders in all their forms. He has a system to analyse how teams convert possessions into attacks, and attacks into shots, and how they allow their opponents to do the same. I compared the defensive rank data above with his data to see what the correlations were:

Defence Midfield Attack
Attacks per Possession 0.65 0.47 0.40
Shots per Attack 0.46 0.53 0.38

So, comparing the Attack, Midfield, Defence PATCH values from the graph above to Mark’s Attacks per Possession and Shots per Attack, we can get an idea of how much different parts of a team contribute to breaking up attacks. Defensive PATCH values explain 65% of the variance in opponent attacks per possession, whereas midfield is a much lower 47%. This makes some sense, while a lot of teams would love their midfield to quash potential attacks before they happen, it’s far more common that they make it throught to the last line. What’s interesting is the second row, where midfield performances explain shots pre attack better than defence. Again I wonder if this is bad shot quality – the defence don’t (and often don’t want to) stop low-expectation long shots. However if your midfield are putting in a good screening performance, attackers won’t even get the space for bad shots.

That’s one explanation, anyway. At the very least I’m happy to see a decent correlation with someone else’s model.

Patchwork Defences

Defences are more than the sum of their parts. There are plenty of games where teams in aggregate can put in a great performance in terms of total or average PATCH values, but still be torn apart on the field. This happens often because of mistakes, which PATCH will probably never be able to account for, but it also happens because of weak links that let down the greater whole. Have a look at Manchester City from this weekend’s absolutely definitive title decider against Leicester:


This is a fairly green chart – City policed a lot of territory, and in various parts of the pitch prevented Leicester from making regular gains. But look at their right-hand side: Otamendi didn’t score especially highly, and Zabaleta (who seems to be pushing quite far forward) scored even worse. Teams rightly fear Leicester’s right wing, because that’s where the formidable Mahrez nominally takes the field, but here we saw Mahrez pop up on the left a few times, including for Leicester’s 2nd goal, and Drinkwater also made some penetrative passes. We can see this from Leicester’s attacking chart for the day:


Very left leaning, basically nothing on the right. Despite the fact that City conceded twice from set-pieces, you still saw scare after scare from open play. The combination of a weak defensive right-hand side, and players taking higher positions than was perhaps advisable against the league’s fastest counter-attacking team (still 2nd in Europe after Caen), meant that good PATCH scores in many parts of the pitch did not necessarily add up to a good defensive performance.

Weak Links

Given what we saw in the Man City vs Leicester game, perhaps we should judge a defence by its weakest link? After all, if they’re allowing lots of ball progression in their area, that’s obviously where the opposition are attacking, whether or not they’re thinking of that player as exploitable. If we just look at the lowest score for a defender in each game (using just those with 90+ minutes in a game to be safe), this is what teams come out looking like:

Team Mean Weak Link PATCH
Chelsea 2.32
Manchester United 2.06
Arsenal 1.99
Manchester City 1.97
Liverpool 1.78
Aston Villa 1.77
Leicester City 1.74
Tottenham Hotspur 1.74
Southampton 1.74
Bournemouth 1.68
Swansea City 1.62
Norwich City 1.61
Crystal Palace 1.59
West Bromwich Albion 1.58
Watford 1.54
Everton 1.53
West Ham United 1.48
Stoke City 1.48
Newcastle United 1.45
Sunderland 1.45

Nothing radically different here, perhaps I should be a little uncomfortable seeing Villa that high, but they have save percentage and shot creation issues, not necessarily an awful defence. That said, these numbers correlate less well with each of the four measures we compared to earlier, so it seems less representative.

Total Territory

PATCH fundamentally rewards defenders for claiming territory, so lets look into any team characteristics can we pick up from looking at their territory as a whole. Who uses the most space? Who leaves the most gaps?

This is total area per game of players’ defensive territory for each team, measured first as the sum of individual areas, then as a merged team area:

Team Total Individual Area Team Area
Arsenal 12375 5286
Aston Villa 12338 5590
Bournemouth 12487 5540
Chelsea 13385 5612
Crystal Palace 14240 5750
Everton 10494 5181
Leicester City 14580 6078
Liverpool 12817 5626
Manchester City 12025 5405
Manchester United 13156 5438
Newcastle United 11767 5003
Norwich City 11949 5614
Southampton 12885 5525
Stoke City 11464 5347
Sunderland 12880 5560
Swansea City 10882 5052
Tottenham Hotspur 13520 5522
Watford 12482 5779
West Bromwich Albion 12943 5694
West Ham United 14022 5693

Which looks like this:


The X axis is the total individual area, which includes overlaps between players. The Y axis is the team shape, the area you get when you merge all the individual territories together and forget overlaps – also worth noting that the lower this value, the more empty spaces the team is leaving on the pitch.

It’s interesting because it reveals teams that are quite expansive in their defensive efforts (to the right are basically the pressers and aggressors, to the left is… Everton, asking very little of its defence). It also shows teams that have an overall compact defensive shape (Newcastle) versus those that are push up more (Leicester, Watford). Above the trend line are teams with less overlap, below are those that are more crowded when defending.

If we apply a similar sort of calculation to PATCH, we can take a team’s area and judge them not by the progression they allow through their territory, but by the progression that happens outside it. If we do that, these are the numbers we see:

Team Outside Territory PATCH
Manchester City 24.09
Liverpool 23.55
Norwich City 22.78
Southampton 22.04
Leicester City 20.77
Watford 20.75
Tottenham Hotspur 20.59
Aston Villa 20.22
West Bromwich Albion 20.19
Crystal Palace 19.37
Bournemouth 19.35
West Ham United 19.26
Chelsea 18.34
Manchester United 17.94
Arsenal 16.98
Swansea City 16.51
Stoke City 16.36
Sunderland 15.96
Everton 13.31
Newcastle United 11.28

So Man City, Liverpool and… Norwich (apparently) allow the least progression outside their territory. Newcastle and Everton leave the biggest gaps for opponents to operate inside.

Getting Goal Side

Above you saw how a lot goes on in empty spaces. The thing that worries me most about PATCH, and particularly the approach I’ve taken to trimming events for territory, is space behind a defender. Perhaps we should leave in all goal side events for a defender? Even more, should we project their territory back to the goal line, or even the goalmouth itself?

Well, you’re going to have to wait to find out. In my next post I’m going to finally get around to looking at some individual player scores, and I’ll experiment with how defenders should be blamed for goal side events then.

PATCHing Teams

Defending your PATCH

Here is Chelsea defending against West Brom in their 2-2 draw this season:


If I’m pointing you to this post from Twitter, it’s likely that you’ve asked, with varying degrees of alarm, what the hell you’re looking at with a chart like above. Because I’m terrible at making legends, here you go:

  • This is a chart of how Chelsea defended in the game.
  • Each shape is a player, it represents their defensive ‘territory’ – the part of the pitch they made tackles, interceptions, fouls etc.
  • The player’s name is written in the centre of their territory, and you should be able to see that some names, and their associated shapes, are bigger or smaller, depending on how much a player ranges around the pitch.
  • Each shape has a colour – this represents how much they allowed the opponent to progress through their territory: more green means the player was more of a brick wall, more red means they were more of a sieve.
  • Above, you might see that Oscar put in a ton of work and claimed a large territory – we reward players who claim a lot of territory, which is why he’s more green than some of the players he shared space with, even though he let the same opposition moves through.
  • Terry did not protect his space particularly well. Mikel and Fabregas provided little in the way of screening, and Matic, who replaced Fabregas, sat very deep but also offered little as they defended their lead.

Just as a quick sanity check on what you see above, WBA’s two goals came from a long shot from a huge empty space in front of Chelsea’s defence (left open by their midfield) and a move on Terry’s side of the penalty box:

Those are cherry-picked and don’t prove much, of course. No chart captures the entirety of a game, but hopefully you see that this is at least an interesting conversation starter to examine where Chelsea might have protected their territory better. Over the course of several games, you may notice the same patterns happening over and over again. At the same time, these are a great first stab at looking for weaknesses in an opponent’s lineup.

And that’s what you’re looking at. How does it work?


A while back I started looking at defence in terms of how a defender prevents their opponents operating in their territory. This included a metric called PATCH (“Possession Adjusted Territorial Control Held”… yeah), which underwent several changes without me really writing it up, despite publishing all sorts of cryptic charts on Twitter. So, my plan today is to go through the whole methodology as it stands today. There’s still work to do, and it’s by no means a hard and fast measure of good and bad defending, but it’s interesting enough to share and hope for some feedback.

Defensive Territory

PATCH is all about defensive territory – where on the pitch a player is responsible for stopping their opponent. We don’t measure this in an idealised way based on formations or anything like that, all we do is look at where a player is actually defending. We take all their defensive actions and draw a line around them – that’s their territory. In the previous version, we only looked at events in a team’s own half or danger zone, so the system wasn’t great at capturing defensive midfielders, who often defend higher up the pitch. That was a problem, but one we needed to solve without including noise from things like aerial challengers on attacking corners etc. It was also a problem that if a player put in even a single tackle in a weird place (a left back on the right wing etc) then the outline of their territory grew hugely.

There are many ways to solve this, I’ve experimented with a couple. The first was to find the average point of a defender’s defensive actions, and just trim events within 1 standard deviation on the X and Y axes. The advantage of this is that it’s dead simple, very quick to do inside a database query, and the resulting area was still somewhat representative of where the player was on the pitch. But not representative enough: it was possible for players to completely disappear if their defensive actions were all taken in a large ring far enough away from the centre, and it occasionally wrongly accused players of retreating into a tiny territory. Here’s an old version of the Chelsea-WBA chart above, look how tiny everyone is, especially John Terry:


I then experimented with a similar approach using the straight-line distance from the centre within the same sorts of bounds, but really this just gave you a slightly more circular version of the previous box. I finally settled on decent compromise between ease of implementation and realism – I trim events to those within the 70th percentile of distance from the centre. Here’s another example, Tottenham’s 4-1 victory over Sunderland:


The one drawback over the previous version is that things look far busier, especially where there are overlaps, which is why I’ve started putting them on a black background, and increasing the transparency of lower-scoring players (because, you know, sieves are more see-through than brick walls). Departure from brand, I know, but probably more readable.

Future avenues to look at are algorithms like local convex hulls, or more probabilistic approaches. You can certainly use some sort of kernel density approach, although I appreciate having hard boundaries to territory as it is. I might be willing to sacrifice the ease of visualising territory for a better approach, however, and I’ve been looking at a fairly complex system whereby you look at defensive events and opponent buildup in previous (representative) games, and use a Bayesian system to determine the degree to which we think a player would usually be defensively responsible in that situation. I’d love to hear any other approaches people have tried.

Ball Progression

The original PATCH metric looked at how many opposition touches a defender allowed in their territory to judge how well they were doing, but this didn’t seem ideal. Some teams with a low block are happy for you to play in front of them to your heart’s content, as long as you don’t make any progress towards goal. Then there are some bad defences that just don’t take many touches to break through and score. So I’ve made a fundamental change here – we now measure ball progression through a defender’s territory. Whenever the ball is passed, or dribbled, or whatever combination of on-the-ball events happens, we look at how much progress the opposition have made towards the defending team’s goal. More than that, we look at the pace with which they’ve moved. Any player whose territory is intersected by the line of this progress gets blamed for it.

So now we’re really measuring something directly relevant – a team moving towards your goal is getting into better and better shooting positions, and preventing, disrupting or postponing this is more or less the core of good defensive work. As ever, it’s not a metric based purely on defensive actions – we still use things like tackles to help mark out a player’s territory, and we hope that there are enough of these events to get an accurate picture. But we’re not judging them on those numbers – we’re judging them in far more direct terms, based on protecting their goal.


As with the previous metric, players are rewarded for the size of their territory , and then penalised for allowing the opposition into it, in this iteration based on ball progression. But the previous scores left me a little uncomfortable, with PATCH regularly recommending bad defences over good ones. I went back and looked in depth at the variables that went into the calculation, and especially the relationships between them.

The first thing I looked at was the possession factor, which was in there to account for the fact that teams without the ball can’t attack you. To be able to compare individual players from high and low possession teams, I normalised things to 50% possession. However it’s not as simple as that, because you might expect high possession teams to have fewer opportunities to make defensive actions, so they’d on average have smaller territories. Rather than scratch my head over it, I just looked at the numbers. It was quickly obvious was that possession really doesn’t have a reliable affect on a player’s territory. More surprisingly, the correlation with ball progression allowed is also extremely low. So, possession’s out. We’ll retcon the acronym later.

I also worried that players with large territories were being overly rewarded, and looked at a couple of different options like taking the root of the area. In the end, if you look at the data, it’s pretty much a linear relationship, but I’ve made the coefficients a little more accurate at least. I also looked at the degree to which minutes on the pitch affected defensive territory, and again, it’s almost impossible to find a reliable correlation. Therefore, only ball progressions is weighted per 90.

So that’s the algorithm – get the area, divide it by ball progression, which you weight per 90 and by pace. The bigger your territory, the better you protect it, the higher you’ll score. It looks a little like this:

(k * Area) ÷ ((Total Ball Progression ÷ Minutes Played x 90) ÷ Average Progression Duration)

That’s the gist anyway.


This is the usual section where I list things I was too lazy to fix, but I promise I’m thinking about them:

  • There are better ways to calculate territory, but not necessarily ones that can run inside an SQL query before I get bored.
  • Players are blamed for ball progression no matter how much their territory is intersected by an opponent event. Even in the case where they hoof the ball way over your head, you still get blamed. Long term, I’d like to handle special cases like this, and assign degrees of blame to different territories.
  • I’m aware that the gaps between territories are interesting – you can defend your territory brilliantly, but still be in the wrong place. Watch this space.
  • Lots of goals, frankly, come from mistakes, which aren’t captured here.
  • Different positions might want different approaches both to territory and scoring.

It’s also worth point out a few other people working in the same space. Sander at @11tegen11 naturally has a version, with scores based on the number of defensive actions:

And David Sumpter of @Soccermatics has similar charts looking at just ball recoveries, which is fascinating to study teams’ pressing approaches:

Happy to hear any other ideas people have!

Defending your PATCH

Gary Neville’s Red Wedding

As an Evertonian, I was fascinated when Moyes went to Real Sociedad. The great Howard Kendall had enjoyed a wonderful spell in the Basque country, and Moyes seemed to start off comfortably enough. In Liverpool he won over the fans with his throwaway “People’s Club” comment, in San Sebastián all he had to do was eat some crisps.

It wasn’t to be a wildly successful stint for Moyes – he beat relegation and little else. But I kept an eye out for his results, if only because it took balls to take a job in Spain (and stay there) when Premier League clubs were calling. When Monday Night Football’s touch-screen savant Gary Neville was offered a Valencia job he had neither earned nor dreamt of, I was similarly impressed that he took the chance, but I felt even more intrigued – how could it be possible to learn on the job at a club of such magnitude?

Last night’s 7-0 massacre at the hands of Barcelona may prove to be Gary Neville’s Red Wedding moment, the young prince crowned too young and unprepared, fatally outmanoeuvred with murderous efficiency by his more experienced enemies. But at least Robb Stark won some battles along the way – what has Neville done? Valencia are winless in the league, and 14 points in 8 games off their results in the same games last season – almost 1.5 points per game lower than their previous pace. Nuno Espírito Santo led them to 10 fewer points in his 13 league fixtures compared to last season, 0.75 points per game off the pace. So you could argue things have got twice as bad under Neville, including elimination from the Champions League, and now the singular bright spot of the Copa del Rey all but extinguished.

Even before last night, it’s been slightly painful to watch at times – Neville wasn’t just an insightful pundit, he was also clear about what kind of football he might want a team under his tutelage to play, and who he hoped to emulate. He has made no secret of his admiration for Mauro Pochettino, and clearly hoped to emulate his high-pressure, high-energy approach. It’s possible there was a mix-up with the tapes though, because watching his first game against Lyon in the Champions League was that his team brought more to mind Pochettino’s predecessor André Villas-Boas – time and again they were caught high, as Lyon countered again and again, carving open the defence of one of England’s most capped defenders.

This can be forgiven – a style that relies on pressing high up the pitch takes time to develop, and Pochettino has been given that time at Tottenham. There is no doubt that’s it’s paying dividends, as pointed out by Colin Trainor recently:

But with Neville engaged in six month audition, and Valencia only five points clear of relegation at this stage, has he had any success in moulding his young squad in his image? What are the hallmarks of Neville’s time at Valencia?

  • Is he defending high? Neville’s team are performing defensive actions less than 1% further up the pitch than Nuno’s (35.1% vs 34.4%) a difference which is nullified if you include the 2014 season.
  • Is he pressing more? Valencia have gone from 5.2 passes per defensive action to 5.5 under Neville, indicating less pressing.
  • Is their tempo higher? Attacking pace has gone from about 3.4m/s to 3.6 m/s.
  • Has he perfected the wing play that Valencia want and expect from a Ferguson acolyte? Nope, same number of crosses per game on average (about 23), key passes slightly narrower if anything. He’s added a couple of successful dribbles per game, but having watched them, you’d expect that, as they rarely create any sort of overloads to offer a passing outlet.


I’ve watched them several times, and I’ll admit I am finding it hard to put a finger on what philosophy Neville has actually brought to Valencia. I asked on Twitter and nobody else seemed to have much of a clue either. Euan McTear wrote a decent piece looking at their numbers and some of Neville’s personnel changes, so I’m reluctant to go into much more depth in hope of finding answers, beyond the obvious fact that they’ve been a bit rubbish.

Rubbish but unlucky? On the face of it, expected goals doesn’t help the picture: I have them about -2.25 in expected goal difference during Neville’s stint, -0.95 under Nuno. However, it’s certainly fair to point out that Neville’s Valencia have been singularly unable to carve open a lead in the league, and perhaps this skews everything. To look into this, I ran 10,000 simulations of the shots from each of his games looking at the winner, but also the first scorer:

Home Away Home Score Away Score Home xG Away xG Home Win % Draw % Away Win % Home Scores 1st Away Scores 1st
Valencia CF Sporting de Gijón 0 1 2.07 1.26 56% 25% 19% 76% 23%
Deportivo de La Coruña Valencia CF 1 1 0.62 0.77 36% 38% 26% 38% 39%
Valencia CF Rayo Vallecano 2 2 1.14 1.72 25% 24% 51% 20% 76%
Real Sociedad Valencia CF 2 0 2.88 0.95 79% 13% 8% 62% 36%
Valencia CF Real Madrid 2 2 2.48 1.50 62% 20% 18% 43% 56%
Villarreal Valencia CF 1 0 0.43 0.66 20% 43% 37% 30% 38%
Valencia CF Getafe 2 2 1.04 0.71 42% 34% 24% 58% 27%
Eibar Valencia CF 1 1 2.78 0.53 89% 9% 3% 96% 3%
Valencia CF Lyon 0 2 1.19 1.26 38% 29% 34% 38% 55%

Note: the ‘score 1st’ columns don’t necessarily add up to 100% because of the possibility of nil-nil draws.

They conceded late – twice – to Real Sociedad, but deservedly so. They certainly could have beaten Real Madrid, the Villareal result seems cruel, and perhaps a better result against Getafe was possible. And then last weekend, the game against Sporting Gijón was notable mostly for Negredo’s series of increasingly spectacular misses.

You would have expected them to nip the first goal somewhere along the line here, and it’s possible at that point all sorts of counter-attacking preparation that we’ve never seen, cooked up on Neville’s iPads, would kick in. That not being the case, at the very least you could argue, as Neville has, that Valencia’s performances coming from behind show they still have some fight. They’re third in La Liga for points after trailing, albeit with no wins, but last night’s awful result undoes this entire narrative, barring unimaginable heroics in the second leg.

To me, it looks increasingly like his 6am Spanish lessons are only going to be useful in saying his goodbyes this Summer. Whether this proves to be a learning experience for him as a manager, or a big enough blow to his ego to send him back semi-permanently to punditry remains to be seen.

Gary Neville’s Red Wedding